957 research outputs found

    Past electron-positron g-2 experiments yielded sharpest bound on CPT violation for point particles

    Full text link
    In our past experiments on a single electron and positron we measured the cyclotron and spin-cyclotron difference frequencies omega_c and omega_a and the ratios a = omega_a/ omega_c at omega_c = 141 Ghz for e^- and e^+ and later, only for e^-, also at 164 Ghz. Here, we do extract from these data, as had not done before, a new and very different figure of merit for violation of CPT symmetry, one similar to the widely recognized impressive limit |m_Kaon - m_Antikaon|/m_Kaon < 10^-18 for the K-mesons composed of two quarks. That expression may be seen as comparing experimental relativistic masses of particle states before and after the C, P, T operations had transformed particle into antiparticle. Such a similar figure of merit for a non-composite and quite different lepton, found by us from our Delta a = a^- - a^+ data, was even smaller, h_bar |omega_a^- - omega_a^+|/2m_0 c^2 = |Delta a| h_bar omega_c/2m_0 c^2) < 3(12) 10^-22.Comment: Improved content, Editorially approved for publication in PRL, LATEX file, 5 pages, no figures, 16

    Robust Entanglement through Macroscopic Quantum Jumps

    Full text link
    We propose an entanglement generation scheme that requires neither the coherent evolution of a quantum system nor the detection of single photons. Instead, the desired state is heralded by a {\em macroscopic} quantum jump. Macroscopic quantum jumps manifest themselves as a random telegraph signal with long intervals of intense fluorescence (light periods) interrupted by the complete absence of photons (dark periods). Here we show that a system of two atoms trapped inside an optical cavity can be designed such that a dark period prepares the atoms in a maximally entangled ground state. Achieving fidelities above 0.9 is possible even when the single-atom cooperativity parameter C is as low as 10 and when using a photon detector with an efficiency as low as eta = 0.2.Comment: 5 pages, 4 figures, more detailed discussion of underlying physical effect, references update

    Quantum coherence and population trapping in three-photon processes

    Get PDF
    The spectroscopic properties of a single, tightly trapped atom are studied, when the electronic levels are coupled by three laser fields in an NN-shaped configuration of levels, whereby a Λ\Lambda-type level system is weakly coupled to a metastable state. We show that depending on the laser frequencies the response can be tuned from coherent population trapping at two-photon resonance to novel behaviour at three photon resonance, where the metastable state can get almost unit occupation in a wide range of parameters. For certain parameter regimes the system switches spontaneously between dissipative and coherent dynamics over long time scales

    Locking Local Oscillator Phase to the Atomic Phase via Weak Measurement

    Full text link
    We propose a new method to reduce the frequency noise of a Local Oscillator (LO) to the level of white phase noise by maintaining (not destroying by projective measurement) the coherence of the ensemble pseudo-spin of atoms over many measurement cycles. This scheme uses weak measurement to monitor the phase in Ramsey method and repeat the cycle without initialization of phase and we call, "atomic phase lock (APL)" in this paper. APL will achieve white phase noise as long as the noise accumulated during dead time and the decoherence are smaller than the measurement noise. A numerical simulation confirms that with APL, Allan deviation is averaged down at a maximum rate that is proportional to the inverse of total measurement time, tau^-1. In contrast, the current atomic clocks that use projection measurement suppress the noise only down to the level of white frequency, in which case Allan deviation scales as tau^-1/2. Faraday rotation is one of the possible ways to realize weak measurement for APL. We evaluate the strength of Faraday rotation with 171Yb+ ions trapped in a linear rf-trap and discuss the performance of APL. The main source of the decoherence is a spontaneous emission induced by the probe beam for Faraday rotation measurement. One can repeat the Faraday rotation measurement until the decoherence become comparable to the SNR of measurement. We estimate this number of cycles to be ~100 cycles for a realistic experimental parameter.Comment: 18 pages, 7 figures, submitted to New Journal of Physic

    Macroscopic quantum jumps and entangled state preparation

    Get PDF
    Recently we predicted a random blinking, i.e. macroscopic quantum jumps, in the fluorescence of a laser-driven atom-cavity system [Metz et al., Phys. Rev. Lett. 97, 040503 (2006)]. Here we analyse the dynamics underlying this effect in detail and show its robustness against parameter fluctuations. Whenever the fluorescence of the system stops, a macroscopic dark period occurs and the atoms are shelved in a maximally entangled ground state. The described setup can therefore be used for the controlled generation of entanglement. Finite photon detector efficiencies do not affect the success rate of the state preparation, which is triggered upon the observation of a macroscopic fluorescence signal. High fidelities can be achieved even in the vicinity of the bad cavity limit due to the inherent role of dissipation in the jump process.Comment: 14 pages, 12 figures, proof of the robustness of the state preparation against parameter fluctuations added, figure replace

    Miniature Paul--Straubel ion trap with well-defined deep potential well

    Full text link

    Evaporation of buffer gas-thermalized anions out of a multipole rf ion trap

    Full text link
    We identify plain evaporation of ions as the fundamental loss mechanism out of a multipole ion trap. Using thermalized negative Cl- ions we find that the evaporative loss rate is proportional to a Boltzmann factor. This thermodynamic description sheds new light on the dynamics of particles in time-varying confining potentials. It specifically allows us to extract the effective depth of the ion trap as the activation energy for evaporation. As a function of the rf amplitude we find two distinct regimes related to the stability of motion of the trapped ions. For low amplitudes the entire trap allows for stable motion and the trap depth increases with the rf field. For larger rf amplitudes, however, rapid energy transfer from the field to the ion motion can occur at large trap radii, which leads to a reduction of the effective trapping volume. In this regime the trap depth decreases again with increasing rf amplitude. We give an analytical parameterization of the trap depth for various multipole traps that allows predictions of the most favorable trapping conditions.Comment: Phys. Rev. Lett., in pres

    Measurement of the hyperfine structure of the S1/2-D5/2 transition in 43Ca+

    Get PDF
    The hyperfine structure of the S1/2-D5/2 quadrupole transition at 729 nm in 43Ca+ has been investigated by laser spectroscopy using a single trapped 43Ca+ ion. We determine the hyperfine structure constants of the metastable level as A=-3.8931(2) MHz and B=-4.241(4) MHz. The isotope shift of the transition with respect to 40Ca+ was measured to be 4134.713(5) MHz. We demonstrate the existence of transitions that become independent of the first-order Zeeman shift at non-zero low magnetic fields. These transitions might be better suited for building a frequency standard than the well-known 'clock transitions' between m=0 levels at zero magnetic field.Comment: corrected for sign errors in the hyperfine constants. No corrections to were made to the data analysi

    Electric Quadrupole Moments of Metastable States of Ca+, Sr+, and Ba+

    Full text link
    Electric quadrupole moments of the metastable nd3/2 and nd5/2 states of Ca+, Sr+, and Ba+ are calculated using the relativistic all-order method including all single, double, and partial triple excitations of the Dirac-Hartree-Fock wave function to provide recommended values for the cases where no experimental data are available. The contributions of all non-linear single and double terms are also calculated for the case of Ca+ for comparison of our approach with the CCSD(T) results. The third-order many body perturbation theory is used to evaluate contributions of high partial waves and the Breit interaction. The remaining omitted correlation corrections are estimated as well. Extensive study of the uncertainty of our calculations is carried out to establish accuracy of our recommended values to be 0.5% - 1% depending on the particular ion. Comprehensive comparison of our results with other theoretical values and experiment is carried out. Our result for the quadrupole moment of the 3d5/2 state of Ca+ ion, 1.849(17)ea_0^2, is in agreement with the most precise recent measurement 1.83(1)ea_0^2 by Roos et al. [Nature 443, 316 (2006)].Comment: 7 page
    • …
    corecore